[關(guān)鍵詞]
[摘要]
目的 考察β-環(huán)糊精包合和Pickering乳液技術(shù)處理的石菖蒲和蒼術(shù)揮發(fā)油(volatile oils from Acori Tatarinowii Rhizoma and Atractylodis Rhizoma,VAA),在強(qiáng)光照射條件下的穩(wěn)定性,以提升揮發(fā)油的穩(wěn)定性及品質(zhì),為其他含揮發(fā)油中藥固體制劑穩(wěn)定性的提升提供參考依據(jù)。方法 對VAA組、β-環(huán)糊精包合VAA組、Pickering乳組進(jìn)行強(qiáng)光照射1、3、5 d穩(wěn)定性考察,收集并測定揮發(fā)油保有率與過氧化物含量。采用GC-MS法測定各組揮發(fā)油成分,用OmicShare、Rmisc、Reshape2、Ggplot2包等分析數(shù)據(jù),篩選差異成分,分析揮發(fā)性成分含量和組成,明確不同處理方式提升揮發(fā)油穩(wěn)定性的效果。結(jié)果 在強(qiáng)光照射下,β-環(huán)糊精包合VAA組與Pickering乳組,保有率無顯著性差異(P>0.05),但相比于VAA組有更低的氧化程度(P<0.001)。GC-MS分析結(jié)果表明,相比于VAA組,Pickering乳組與β-環(huán)糊精包合VAA組能夠延緩強(qiáng)光照射環(huán)境下大部分差異成分與主要成分的含量變化,在強(qiáng)光照射1、3、5 d后,Pickering乳組阻止了10、9、10種差異成分的新生成,β-環(huán)糊精包合VAA組阻止了4、9、9種差異成分的新生成;Pickering乳組降低了2、2、3種新生成差異成分的相對含量,而β-環(huán)糊精包合VAA組分別降低了5、0、2種;另外,Pickering乳組有效保存了6、2、2種消失成分,β-環(huán)糊精包合VAA有效保存了5、1、8種消失成分。綜上,Pickering乳與β-環(huán)糊精包合技術(shù)均能使VAA的穩(wěn)定性顯著提高。結(jié)論 β-環(huán)糊精包合VAA與Pickering乳能夠顯著提升VAA的穩(wěn)定性及品質(zhì),Pickering乳更具優(yōu)勢。
[Key word]
[Abstract]
Objective To investigate the stability of volatile oils from Shichangpu (Acori Tatarinowii Rhizoma) and Cangzhu (Atractylodis Rhizoma) (VAA) treated with β-cyclodextrin inclusion and Pickering emulsion technology under strong light exposure conditions, aiming to enhance the stability and quality of volatile oils, and to provide a reference for improving the stability of other solid preparations containing volatile oils in traditional Chinese medicine. Methods The stability of VAA group, β-cyclodextrin inclusion VAA group, and Pickering emulsion group was assessed under strong light exposure for 1, 3, and 5 days. The retention rate and peroxide content of volatile oils were collected and measured. The components of each group’s volatile oils were determined using GC-MS. Data were analyzed using packages such as OmicShare, Rmisc, Reshape2, and Ggplot2 to screen for differential components, analyze the content and composition of volatile components, and clarify the effects of different treatment methods on enhancing the stability of volatile oils. Results Under strong light exposure, there was no significant difference in retention rates between the β-cyclodextrin inclusion VAA group and the Pickering emulsion group (P > 0.05), but both exhibited lower oxidation levels compared to the VAA group (P < 0.001). GC-MS analysis indicated that, compared to the VAA group, both the Pickering emulsion group and the β-cyclodextrin inclusion VAA group were able to delay changes in the content of most differential and main components under strong light exposure. After 1, 3, and 5 days of strong light exposure, the Pickering emulsion group prevented the formation of 10, 9, and 10 new differential components, while the β-cyclodextrin inclusion VAA group prevented the formation of 4, 9, and 9 new differential components. The Pickering emulsion group reduced the relative content of 2, 2, and 3 newly formed differential components, whereas the β-cyclodextrin inclusion VAA group reduced 5, 0, and 2. Additionally, the Pickering emulsion group effectively preserved 6, 2, and 2 disappearing components, while the β-cyclodextrin inclusion VAA group preserved 5, 1, and 8 disappearing components. In summary, both Pickering emulsion and β-cyclodextrin inclusion technology significantly enhance the stability of VAA. Conclusion Both β-cyclodextrin inclusion VAA and Pickering emulsion can significantly improve the stability and quality of VAA, with Pickering emulsion demonstrating greater advantages.
[中圖分類號]
R283.6
[基金項目]
國家自然科學(xué)基金面上項目(82274105);陜西省中醫(yī)藥管理局中醫(yī)藥科研項目(SZY-KJCYC-2025-JC-043);中藥制藥共性關(guān)鍵技術(shù)研究科技創(chuàng)新團(tuán)隊(2024-CXTD-03);陜西中醫(yī)藥大學(xué)學(xué)科創(chuàng)新團(tuán)隊項目(2019-YL11);陜西省中醫(yī)藥管理局中藥制藥工程重點學(xué)科(2017001)